
10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 1/12

Foxdeli API is based on REST architecture. In order to be able to use it you need to fulfill following requirements.

1. Access only via secured HTTPS protocol.

2. Get authentication to access via https://id.app.foxdeli.com/oauth-registration .

3. Authenticate using HTTP Bearer token authentication.

4. Send data encoded as UTF-8.

API environment
For easy API connectino you can use testing envrionment which is identical to production but using separate database in
background and data is not sent to carriers APIs.

Production environment PROD Testing environment TEST SANDBOX

Rest API https://rest.foxdeli.com https://rest.sandbox.foxdeli.com

Registration of OAuth
client

https://id.app.foxdeli.com/oauth-
registration

https://id.app.sandbox.foxdeli.com/oauth-
registration

Registration of account https://id.app.foxdeli.com https://id.app.sandbox.foxdeli.com

Client app https://id.app.foxdeli.com/login https://id.app.sandbox.foxdeli.com/login

 WARNING: Change of TEST to SANDBOX
Since November 2020 there is a new SANDBOX enviropnment. Original TEST environment will not be updated and will be
shut down around Q1 2021. Use SANDBOX environment for testing purposes.

1] Rest API versions /v2, /v3, /v4.

2] OAuth client to connect to API requires company account creation.

3] For testing purposes test account creation is reuqired. Production data is carried over to test every month and they also rewrite
carrier settings in test environment. It is recommended to set up carriers and their services in both environments at the
beginning.

4] Foxdeli application in TEST environment where you can setup configuration for testing.

5] Original testing addresses (order corresponding to table rows) are: https://test.rest.foxdeli.com, https://www.foxdeli.com/api-
test.html, https://test.app.foxdeli.com/auth/register, https://test.app.foxdeli.com.

Authentication
Foxdeli supports two kids of authentication. Basic using generated api key and Bearer using OAuth 2.0., which supports scopes
(access rights for particular methods)

All requests except for root address rest.foxdeli.com require HTTP authentication. To access using Basic auth you need to get
token from support team and to access using OAuth you need to get access_token .

Considering the nature of this authentication it is NECESSARY to always use HTTPS protocol. Single API call via HTTP compromises
authentication tokens. More in section Authentication

Introduction to API Foxdeli.com
Verze: 1.71; 2022-04-21

1] 5]

2] 5]

3] 5]

4] 5]

https://id.app.foxdeli.com/oauth-registration
https://rest.foxdeli.com/
https://rest.sandbox.foxdeli.com/
https://id.app.foxdeli.com/oauth-registration
https://id.app.sandbox.foxdeli.com/oauth-registration
https://id.app.foxdeli.com/
https://id.app.sandbox.foxdeli.com/
https://id.app.foxdeli.com/login
https://id.app.sandbox.foxdeli.com/login

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 2/12

HTTP codes
First verification on your side should be http status code verification.. All codes are according to HTTP specification.
(More about HTTP here https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

Possible HTTP codes:

HTTP code Meaning Details

200 OK Request succesfully processed

201 Created Request processed and resource succesfully created

304 Not Modified Response identical to cached resource - empty body returned

400 Bad Request Bad request received - invalid data input provided

401 Unauthorized Authentication failed, auth header missing or invalid

404 Not Found Requested resource (URL) not found

405 Method Not Allowed Invalid http method used, response contains vlaid methods

406 Not Acceptable Invalid Accept used

410 Gone Old version of API used

412 Precondition Failed Attempt to modify resource that was already updated

414 Request-URI Too Large Too long URI used

415 Unsupported Media Type Invalid Content-type header received

422 Unprocessable Entity Request validation failed, for exmaple invalid package weight

426 Upgrade Required Used unsecured HTTP protocol

500 Internal Server Error Server side error

503 Service Unavailable Service temporarily unavailable(service update in progress)

Supported communication formats
To make it easy to connect to our API we support several data formats of communication.

use MIME type Content-Type header in your requests, to specify what data format you send us.

Use MIME type Accept header in your requests, to specify what data format you expect in response. Supported formats in
table bellow.

Use Accept-language header in your requests, to localize messages in responses. We support en (as default) and czech cs .

Supported formats (for Content-Type: and Accept:):

JSON Recommended Use MIME type application/json in header.

XML Support will be terminated Use MIME type application/xml in header

form-urlencoded Support will be terminated Use MIME type application/x-www-form-urlencoded in header

Can I skip Accept header?
If header is missng we use generic */* , as default format we use JSON. In case of invalid or unsupported header Accept the
error message is in JSON.

What is the root element of XML?
If you decide to use XML format for reponse the root tag is always <root> .

How do I know I use wrong format?

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 3/12

If we accept invalid format, HTTP status 400 is returned.

What date format is used?
Unless specifie otherwise, all date formats are ISO 8601, eg. 2014-12-31T18:25:50+02:00 .
Více o ISO 8601 zde https://en.wikipedia.org/wiki/ISO_8601 .

What decimals format is used?
You can use , or . equally. Separator of thousands should not be used, eg. 12500.00 , 330,50 .

 Exceptions
If there is an error on our side the response can be in different format than requested in Accept header. These errors can
occur on server side errors or during maintenance thus we recommend to check status code before parsing the reponse.
An example can be 414 code. If the response code is 5xx, it is possible that response is not in expected format.

Response structure
All responses keep same strucutre. Particular repsonses depend on context but generally speaking they keep following structure.

Example of response structure

Successful response: Error response:

root
--- code
--- status
--- message
--- data

root
--- code
--- status
--- message
--- errors
--- --- [0]
--- --- --- message
--- --- --- field
--- --- --- value
--- --- [1]
--- --- --- message
--- --- --- field
--- --- --- value

Example structure of error responses

JSON XML

https://en.wikipedia.org/wiki/ISO_8601

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 4/12

JSON XML

{
"code": 422,
"status": "error",
"message": "Validation failed",
"errors":
 [
 {
 "message": "This value should be of type float.",
 "field": "[0].packages[0].weight",
 "value": "3 kg"
 },
 {
 "message": "Invalid currency format, expected ISO
4217",
 "field": "[0].valueCurrency",
 "value": "€"
 }
]
}

<?xml version="1.0" encoding="UTF-8"?>
<root>
 <code>422</code>
 <status>error</status>
 <message>Validation failed</message>
 <errors>
 <message>This value should be of type float.</message>
 <field>[0].packages[0].weight</field>
 <value>3 kg</value>
 </errors>
 <errors>
 <message>Invalid currency format, expected ISO
4217</message>
 <field>[0].valueCurrency</field>
 <value>€</value>
 </errors>
</root>

Description of items:

code general error code identical to http code

status response status, possible values: success, error

message general description of error (in english)

data response data, only for successsul repsonses, optional and structure depends on context

errors array of errors for error repsonses, optional

errors.message english desription of error

errors.field path to error field

errors.value invalid field value

 Syntax
all keys use camelCase syntax.

 More information
Detailed description of error codes and structure of succesfull response can be found on page of another our service
Balíkonoš next to particular service methods.
These services and resources are identical with Foxdeli.com except for different endpoint here
(https://rest.foxdeli.com/api/v3/).

API versioning
The version of API used is part of URL. Right now there is API v4, thus URL of all resources begin with
https://rest.foxdeli.com/api/v4/ . Any API version updates will be announced in advance. Older versions of API will be kept for

some time.

Particular API versions:

v1 - initial API version, not supported anymore

v2 - to be deprecated soon - compatible with https://balikonos.cz/api/v2

v3 - actual version, compatible with https://balikonos.cz/api/v3

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 5/12

v4 - actual version, newest version updated regularly.

During development you will need to verify the behaviour of your application and what responses can you expect from API.

Creation of SANDBOX account
You can register to test nevironment using URL under this paragraph. It is a separate environment from PROD that uses different
DB and doesn't call carrier APIs.

In foxdeli app you need to setup your colleciton places. For testing of particular carrier choose settings and inserta any testing
credentials.

For testing of creation and closing of packages you need to enable collection place directly in carriers settings page.
Without this settings all packages will be marked as address to address, which is undesirable in cases when you want to test
deliveries from collection place.

Links to create testing account can be found in section Environments in TEST column.

CURL
Simplest way to test is using CURL Example usage:

curl -H "Accept: application/xml" -H "Authorization: Bearer bacffecfc1bd349b85e51b37a542aed57f457a8e" https://rest.foxdeli.com

Other tools
There is a vast variety of tools to test REST APIs, for exmaple Chrome extension Postman

Data compression
If you add Accept-encoding: gzip header to your request, responses will be compresseed using gzip. This method will save around
80 % of transfered data! For JSON format approximately 65 % of data.

Compressed data will be return along with Content-encoding: gzip header. You need to decompress the data on your side. For
example PHP You can also send use the requests using this method. You need to use Content-encoding: gzip header.

You can also configure your server to do the compression automatically - for example apache

 Recommendation
Because amount of transferred data can be really big we strongly recommend to always use compression.

HTTP Cache

Testing and debugging

Vlastnosti a funkce

http://localhost:8880/apidoc#environment
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop
https://www.php.net/manual/en/function.gzdecode.php
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 6/12

All GET methods return ETag header, with actual repsonse hash. This value should be stored along with returned data. In case of
identical query with If-None-Match header no body is returned as content remains the same. Unless content changed, HTTP
response will be 304 with empty body – as the content has not changed and it is unnecessary to transfer any data. This is useful
in case of large repsonses(like PDF labels). Behavioud can be checked in browsera https://rest.foxdeli.com

Další funkce

Overriding POST method
If you rapplicatoin cannot use PUT or DELETE HTTP requests, it is possible to use POST. If you set up X-HTTP-Method-Override

headerto some of supported mathods (PUT či DELETE) using POST request, it will perform same action as if PUT or DELETE was
used.

Only POST can be overridden, not GET. Method GET is safe and cannot change resource state.

Output format
Standard JSON and XML responses are pretty formated for better readability.This behaviour can be disabled using query
parameter prettyPrint set to false . See example of root resource https://rest.foxdeli.com?prettyPrint=false . This can also
reduce the amount of transferred data

Unsupported functions

JSONP
Support for JSONP is not possible due to header authorization.

CORS
Support for Cross-origin resource sharing is not implemented nor planned to be.

Foxdeli API supports simple Basic authentication and more advancerd Bearer OAuth 2.0.
In order to securely access API exposed on rest.foxdeli.com HTTPS protocol, HTTP connections will be rejected.

Authentication method comparison

Basic Bearer (OAuth 2.0)

Support for
particular requests

NO YES

Token expiration NO YES, 60 minutes

Integration
complexity

Low High

Activation method Generation of basic token in settings of
Foxdeli app (section API)

Generation of OAuth client via form here or in test
environment (sandbox) here

1] Basic token is immediatelly active after creation. It is immediatelly paired with you Foxdeli registration and no other steps are
needed. Basic token can be regenerated anytime.

2] OAuth client is not paired with your registration in Foxdeli. Pairing is done afterwards - see "request for auth code" bellow.

Basic autentication
To obtain Basic API token please contact foxdlei support team.

Autentizace

1] 2]

https://rest.foxdeli.com/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Safe_methods
https://rest.foxdeli.com/?prettyPrint=false
https://en.wikipedia.org/wiki/JSONP
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://id.app.foxdeli.com/oauth-registration
https://id.app.sandbox.foxdeli.com/oauth-registration

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 7/12

They will generate token for you, that is required in the header of each request over HTTPS protocol. Token has limited lifetime and
we recommend to ask for regeneration once in a while.

Basic token should be used in request header. Remember to keep one space between Basic and API token or the header iwll be
considered invalid.

Example header:

Authentication: Basic 684v98fd84vfd9845df55616d5f7d10d54ce9798ccd391735387ea2f6d9c64ce7d5
Content-Type: application/json

 Info
Possibility to manually generate Basic API tokenis currently under development.

OAuth 2.0
OAuth 2.0 protocol to authorize API clients was created according to specification RFC 6749 .

This documentation describes steps to integrate and use OAUTH 2.0, so that working with the protocol is understandable and
clear.
DEtails of particular parts of protocol are not listed but can be found in aforementioned specification or in this article .

Steps to activate OAuth client

1. Registration of OAuth client - register new OATUH 2.0 client for your API on our web

2. Allowing authorization (request for auth code) - Allow access to your API in your Foxdeli account and save authorization code

3. Request for access token - Request access_token using your authorization code

4. Access to resources - Start using API according to API Foxdeli specification

5. Access to resources - refresh access token Obtain new access_tokenu . Can be used only when you already have a
refresh_token .

Step 1. - Register OAuth client
Make a registratin of new OAuth 2.0 client entering basic input data about your application, which will be using API access to your
foxdeli data:

SANDBOX https://id.app.sandbox.foxdeli.com/oauth-registration
PROD https://id.app.foxdeli.com/oauth-registration

Most important item in this form is redirect URi (described as redirect_uri in specification). It defines endpoint, To which our
application will redirect all auth requests. This address should use https protocol as it uses sensitive data!

Password is your authentication secret, described in specification as client_secret . This secret is used to request access_token ,
comparably to password in Basic authentication. As a username in this OAuth authenticaiton you can use generated identifier,
that you iwll obtain upon finished OAUTH client registration. In specification desribed as client_id .

A copy of registraion data will be sent to your email. It will contain aforementioned identifier and password, that you have set.

 Warning
This implementation doesn't support login using query parameters or in request body. Find bellow sample request with
this authorization. At the same time we do not support public clients usually implemented in javascript.

Step 2. - Enabling authorization(request for auth code)
You already have created an OAuth client and now you have to enable access to your Foxdeli account. After approval you will
save authorization_code to be used in next step.

This is done on authorization endpoint having following address:
https://app.sandbox.foxdeli.com/oauth/authorize/ for SANDBOX ,

or https://app.foxdeli.com/oauth/authorize/ for PROD .

https://tools.ietf.org/html/rfc6749
http://aaronparecki.com/articles/2012/07/29/1/oauth2-simplified
https://id.app.sandbox.foxdeli.com/oauth-registration
https://id.app.foxdeli.com/oauth-registration

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 8/12

This urls query stringu contains following required parameters: response_type , client_id and also scope and state .
Scope defines what methods can OAuth client call. Scope of particular resources are defined in method documentation
http://localhost:8880/en/methods#methods-endpoints (see OAuth Scope).
In case of multiple scopes join them using plus(+) character.
It is required that your client verifies accordance of state query parameter with reply from the server sent with random value of
this param. This is used to prevent CSRF attacks.

In case you will also add redirect_uri parameter, it is required to be in strict accordance with address that you entered during
registration of your OAuth client.

After succesful request user is displayd a form to allow or disallow your applications access to Foxdeli data. Along with that name
of your company, logo, web address, scope and redirect uri is displayed.
After redirection of URL you can obtain authorization_code. it will be passed via GET as a query parameter code .

 WEBVIEW
To request for authorization_code you must be signed in foxdeli app account. It is necessary that system you use
supports HTML page rendering and supports sessions. Because it is GET method, request can be done via regular browser.
Following redirect can be directly to your API endpoint, where authorization_code will be catched and can be used by
your system to authorize.
You allowing access, your logged user and manual confirmation of your ccount is part of securing the API access.

Page with allow button

In case of pressing allow button you will be redirected to redirect_uri where query string will contain authorization_code valid for
90 seconds. This code is always 40 characters of lowercase letters and numbers.

 Warning
ŽRequest for authorization_code should only be done once or in case of scope change of given client. The goal is to get
authorization_code , that can be used later on to obtain access_token and refresh_token .

Once your access_token expires you can renew it using refresh_token . Authorization via "webview" is not necessary
anymore.

If you have multiple accouns in Foxdeli application plase make sure you use the correct account to allow OAuth client.

Example of authorization request
Detailed request description can be found in specification .

Endpoint otevřít

GET: https://app.foxdeli.com/oauth/authorize/?response_type=code&client_id=zjhygknkfk&scope=deliveries+collection-
protocols&redirect_uri=https://mujeshopik.cz/foxdeli-endpoint/&state=csjkhd5b1

Example of succesful auth request (redirect)
Detailed description can be found in specification .

Endpoint otevřít

GET: https://mujeshopik.cz/foxdeli-endpoint/?code=87f90ba9fe97e3b43f11c37eea1e1b475dbd59b9&state=csjkhd5b1

Example of unsuccessful auth request
Detailed description can be found in specificaiton .

Endpoint otevřít

GET: https://mujeshopik.cz/foxdeli-endpoint/?
error=access_denied&error_description=The+user+denied+access+to+your+application&state=csjkhd5b1

Step 3. - request access token

http://localhost:8880/en/methods#methods-endpoints
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://app.foxdeli.com/oauth/authorize/?response_type=code&client_id=zjhygknkfk&scope=deliveries+collection-protocols&redirect_uri=https://mujeshopik.cz/foxdeli-endpoint/&state=csjkhd5b1
https://tools.ietf.org/html/rfc6749#section-4.1.2
https://mujeshopik.cz/foxdeli-endpoint/?code=87f90ba9fe97e3b43f11c37eea1e1b475dbd59b9&state=csjkhd5b1
https://tools.ietf.org/html/rfc6749#section-4.1.2.1
https://mujeshopik.cz/foxdeli-endpoint/?error=access_denied&error_description=The+user+denied+access+to+your+application&state=csjkhd5b1

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 9/12

In this step you will exchange authorization_code for new access_token and refresh_token .

Using access_tokenem you can access API for (60 minutes).

Afte3r expriation of access_tokenu you request new using refresh_tokenu . Refresh token has unlimited expiration.

 TIP
Due to short expiration time of access token (and necessary renewal using refresh token) it is recommended to store
refresh token in DB (if you create application for multiple account registered in foxdeli) or to appliation configuration (if
you create an app just for you).
Access token can be stored in session until it expires in order to decrease overhead necessary to access this API resource.
It is not necessary to store access token in DB.
It is strongly discouraged to request new access token for every request!

Example of HTTP request for access token (REQUEST)
Detailed description can be found in specification .

Endpoint

POST: https://rest.foxdeli.com/oauth/token/

Ukázka hlavičky

Authorization: empoeWdrbmtmazphYmNkMTIzNA==
Content-Type: application/x-www-form-urlencoded

Ukázka těla

Array
(
 [code] => 87f90ba9fe97e3b43f11c37eea1e1b475dbd59b9
 [redirect_uri] => https://mujeshopik.cz/foxdeli-endpoint/
 [scope] => deliveries collection-places
 [grant_type] => authorization_code
)

Description of request parameters (REQUEST)

Parameter Example value Description

Authorization Basic empoeWdrbmtmazphYmNkMTIzNA== HTTP Basic authentication of your application. Connect "Basic"
and identifier of OAuth client with password, encoded as base64.
Example: "Basic ".base64_encode($client_id.":".$client_secret)

Content-type application/x-www-form-urlencoded Always use this value. POST request body must containt values
encoded as application/x-www-form-urlencoded.

code 87f90ba9fe97e3b43f11c37eea1e1b475dbd59b9 Authorization code received in previous response

redirect_uri https://mujeshopik.cz/foxdeli-endpoint/ Registered redirect uri

scope collection-places deliveries List of requestd accesss scopes divided by space(each resource
has its scope, more in method documentation)

grant_type authorization_code Always just authorization_code

Example of HTTP response for access token request (REQUEST)
Returned access_token is valid for 60 minutes (validity in seconds is in response) and refresh_token with unlimited expiration

Both tokens are 40 characters long and only contain lowercase characters and numbers. To obtain new access token you will
receive same data structre without refresh_token item. In case that user denies your application access to his data all your
tokens will be revoked

Detailed request description can be found in specification .

Ukázka hlavičky

https://tools.ietf.org/html/rfc6749#section-4.1.3
http://localhost:8880/en/methods#methods-endpoints
https://tools.ietf.org/html/rfc6749#section-4.1.4

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 10/12

HTTP/1.1 200
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Encoding: gzip

Ukázka těla

{
 "access_token": "f709547842cb9f5b891bb9dd3dcaf90d512f8ddd",
 "expires_in": "3600",
 "token_type": "bearer",
 "scope": "deliveries collection-places",
 "refresh_token": "406aabf0e1aedc3c600cbf7f591e9b439408f5c3"
}

Step 4. - Access the resources
All resources require HTTP Bearer authentication specified in RFC 6750 .
Use access_token in HTTP header Authorization along with Bearer prefix.

Using token in query or body of request is not supported.

Example request (REQUEST)

Endpoint otevřít

GET: https://rest.foxdeli.com/v4/deliveries?deliveryId=15023456

Ukázka hlavičky

Authorization: Bearer f709547842cb9f5b891bb9dd3dcaf90d512f8ddd
Accept: application/json

Example of response with expired access token (RESPONSE)
It is necessary to check if you use valid non expired access token. If you request with expired or otherwise invalid token an error
according to specification is returned. For expired token following response is returned:

Ukázka hlavičky

HTTP/1.1 401 Unauthorized
Authorization: Bearer f709547842cb9f5b891bb9dd3dcaf90d512f8ddd
WWW-Authenticate: Bearer realm="ClientApi", error="invalid_token", error_description="The access token provided has expired"
Accept: application/json

Ukázka těla

{
 "code": "401",
 "status": "error",
 "message": "The access token provided has expired",
 "errors": []
}

Step 5. - access to resources - refresh access token
This step is used only when access_tokenu has expired.

Using refresh_tokenu your OAuth client requests new access_tokenu (valid for another 60 minutes)

Header of this POST request must contain identical params as when requesting using authorization_code (see. Step 3.). Body of
request must contain refresh_token , redirect_uri , scope , grant_type .

Conten-type type should be application/x-www-form-urlencoded.

Description of parameters (REQUEST)

https://tools.ietf.org/html/rfc6750
https://rest.foxdeli.com/v4/deliveries?deliveryId=15023456

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 11/12

Parameter Example value DescriptionParameter Example value Description

Authorization Basic empoeWdrbmtmazphYmNkMTIzNA== HTTP Basic authentication of your application. Connect "Basic"
and identifier of OAuth client with password, encoded as
base64. Example: "Basic

".base64_encode($client_id.":".$client_secret)

Content-type application/x-www-form-urlencoded Always use this value. POST request body must containt values
encoded as application/x-www-form-urlencoded.

refresh_token 406aabf0e1aedc3c600cbf7f591e9b439408f5c3 Refresh token, kthat you received in access_token response

redirect_uri https://mujeshopik.cz/foxdeli-endpoint/ Registered redirect uri

scope collection-places deliveries List of requestd accesss scopes divided by space(each
resource has its scope, more in method documentation)

grant_type refresh_token Always just refresh_token

Example of refresh tokene request (REQUEST)

Endpoint

POST: https://rest.foxdeli.com/oauth/token

Ukázka hlavičky

Authorization: empoeWdrbmtmazphYmNkMTIzNA==
Content-Type: application/x-www-form-urlencoded

Ukázka těla

Array
(
 [refresh_token] => 406aabf0e1aedc3c600cbf7f591e9b439408f5c3
 [redirect_uri] => https://mujeshopik.cz/foxdeli-endpoint/
 [scope] => deliveries collection-places
 [grant_type] => refresh_token
)

Ukázka odpovědi

Ukázka hlavičky

HTTP/1.1 201
Content-Type: application/json
Content-Encoding: gzip

Ukázka těla

{
 "access_token": "943a8490c94e6750789e2bbb0a0272b8d3833869",
 "expires_in": "3600",
 "token_type": "bearer",
 "scope": "deliveries collection-places"
}

© 2018 - 2022 Foxdeli s.r.o.,

http://localhost:8880/en/methods#methods-endpoints

10.05.22 14:27 API Documentation | Foxdeli Documentation

localhost:8880/en/apidoc#intro 12/12

